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Abstract

The unsteady flow created by a cascade of oscillating airfoils is investigated. A frequency-domain model is

constructed and the proper orthogonal decomposition technique is applied to construct several reduced order models of

subsonic and transonic flows. A cascade of NACA-5506 airfoils is numerically investigated to show that reduced order

models with only 35 degrees of freedom accurately predict the unsteady response of the full model with approximately

6000 degrees of freedom in the subsonic regime, for a broad range of Mach numbers. In the transonic regime, 55 degrees

of freedom were shown to be required to accurately predict the response of the full model. The increased number of

degrees of freedom is shown to be due to the presence of the shock and not the increase in the Mach number per se.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The dynamics of unsteady flows and fluid–structure interaction phenomena may be well predicted by use of computer

fluid dynamics (CFD) codes using a large number of degrees of freedom, up to millions. Due to recent advances in

computer and software engineering, the computation time required to perform such accurate calculations has been

reduced, but remains prohibitive when numerous analyses, such as parametric analyses, are required. In addition, the

large CFD calculations are practically impossible to use directly in control applications because most control strategies

are based on a low number of state variables, ranging typically up to 100. One technique designed to overcome the

limitations generated by the large number of degrees of freedom in CFD calculations is the use of reduced order models.

Generally, a reduced order model (ROM) is a simplified model which has a dramatically lower number of degrees of

freedom than the original model and it is capable to predict accurately the dynamics of the original model.

Although developing reduced order models has regained momentum only recently, there are several classical

techniques which fall under this category of modelling. For example, these techniques have been used to model fluid–

structural systems encountered in aeroelasticity in the early attempts of model reduction. In that field, studies such as

the actuator disk theory (Greitzer, 1976), and other phenomenological studies (Moore and Greitzer, 1986) are based

mostly on physical insights. These insights are useful, but they are limited to a small range of parameter variations in the

modelled system, such as forcing frequency or static and dynamic loads, among others. More recent analyses (Peterson

and Crawley, 1988; Ueda and Dowell, 1984) use data-derived reduced order models, such as Pad!e approximants

(Feldmann and Freund, 1995; Karpel, 1999) or describing functions by curve fitting unsteady aerodynamical transfer

functions. Furthermore, eigenmode summation techniques in either time or frequency domains (Dowell, 1995; Hall,

1994), and proper orthogonal decomposition, also known as the Karhunen–Lo"eve method (Epureanu et al., 1999, 2000,

2001b; Kim, 1998; Romanowski, 1996) have been successfully used as well. Most of these techniques are linear, while a
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few focus on nonlinear systems (Kappagantu and Feeny, 1999; Silva, 1999; Silva and Bennett, 1993, 1995). Reduced

order models have been constructed been used primarily in the time domain (Pettit and Beran, 2002; Willcox et al.,

2001, 2002) and applied to a variety of aeroelastic problems including control (Lucia et al., 2002; Willcox et al., 1999)

and design (LeGresley and Alonso, 2000). Recently, Dowell and Hall (2001) have prepared a review of eigenmode and

proper orthogonal decomposition based ROMs for linear and nonlinear aerodynamics that summarizes and discusses

much of the relevant literature and recent research advances.

Although most recent research on reduced order modelling has focused on time linearized systems, these linearized

techniques have been used by Noor and Stone to model both linear and nonlinear phenomena (Noor 1994; Stone and

Cutler, 1996). The linearized reduced order modelling technique has been applied to a variety of problems, such as

Burger’s model of turbulence (Canuto et al., 1988; Sirovich, 1987a, b), Euler equations, Navier–Stokes equations

(Deane et al., 1988), Raleigh–B!enard convection (Holmes et al., 1996), and boundary layer models (Liu et al., 1994). As

distinct from linearized analyses, fully nonlinear normal modes and reduced order models have been investigated also for

low-dimensional systems (Shaw and Pierre, 1994). However, the nonlinear normal modes were shown to be very

complex for high-dimensional systems. Also, internally balanced reduced order models (Laub et al., 1987; Moore, 1981;

Willcox and Peraire, 2002) have been used in control applications (Baker et al., 1996). Holmes et al. (1996) and Sirovich

(1987a, b) used proper orthogonal decomposition (POD) in the context of turbulent flows as a technique which allows

for the identification of naturally forming coherent structures from numerical simulations or experiments. These

coherent structures contain most of the energy and are usually the most important components of the dynamics (Feeny,

2002; Kappagantu and Feeny, 2000a, b).

Proper orthogonal decomposition (POD) is a technique used for model reduction because it allows one to obtain

good approximations of the spatial modes of vibration of a system using the response of the system to various

excitations. The POD technique has been first used by experimentalists to analyze test data and recently has been

applied to a wider variety of problems, such as wind load calculations (Bienkiewicz, 1996; Uematsu et al., 1997) and

coherent structure identification (Holmes et al., 1996; Sirovich, 1987a). The crucial assumption made in the POD

technique is that the dynamics of large systems is in fact low dimensional (Georgiou and Schwartz, 1996), i.e., the

inertial manifold of the dynamics is low dimensional. For a large category of problems, this assumption holds because

in many cases most of the energy of the system being analyzed is contained in the dynamics of a few modes. The trade-

off between accuracy and complexity of ROMs may be estimated (Slater et al., 2002), and is determined by the

dimension of the inertial manifold for each particular application.

Reduced order modelling has been used in the time and frequency domains for both unsteady analyses and ROM

construction (Epureanu et al., 1999, 2000, 2001b). Inviscid flows have been investigated using the full potential equation

and POD techniques in the frequency domain (Epureanu et al., 2001a). These studies have shown that inviscid unsteady

flows passing through a two-dimensional turbomachinery cascade may be modelled accurately using ROMs with

approximately 25 degrees of freedom. Also, the required number of modes in a ROM has been shown to be only

weakly dependent on the upstream far-field Mach number, while the critical factor is the accuracy of the POD

modes used for model reduction. The value of the Mach number for inviscid flows was shown to have an

important influence on the accuracy of the POD modes and to influence indirectly the accuracy of the ROMs

(Epureanu et al., 1999, 2000, 2001a, b).

In this paper, we apply the POD technique in the frequency domain and construct ROMs of unsteady viscous flows in

a turbomachinery cascade. The problem of a forced excited flow is investigated. A coupled viscous-inviscid nonlinear

model of subsonic and transonic flows in a cascade of airfoils is used to compute the steady flow. Then, a small

amplitude motion of the airfoils about their steady flow configuration is considered. The unsteady flow is linearized

about the nonlinear steady response based on the observation that in many cases the unsteadiness in the flow has a

substantially smaller magnitude than the steady component. A generic compressor cascade geometry is considered. The

airfoils in the cascade are NACA-5506 and have a chord c: The gap between the airfoils is denoted by G: A solidity G=c

of value 1 is considered. The stagger angle g is 45�: The inflow angle Y is 55�; and the Reynolds number based on chord
and upstream velocity Re is 5� 105: This configuration is numerically investigated for several cases, i.e., subsonic cases
where the upstream far-field Mach number is 0.5, 0.6 and 0.7, and transonic cases where the upstream far-field Mach

number is 0.8 and 0.9.

The dependency of the required number of aerodynamic modes in ROMs of viscous flows on one of the most

significant parameters of the system, the far-field upstream Mach number, is investigated. For inviscid flows, the

dimension of the ROMs has been shown to be strongly dependent on the accuracy of the POD modes used for model

reduction and weakly dependent on the Mach number per se (Epureanu et al., 2001a). Distinct from inviscid flows, for

viscous flows it has been observed that transonic ROMs require a larger number of modes than the subsonic ROMs for

a similar geometry, range of reduced frequencies and interblade phase angles (Epureanu et al., 1999, 2000, 2001b). The

increased number of modes may be due to viscous effects at increased Mach number per se, or the viscous effects in the
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vicinity of the strong spatial gradients in the region of shocks (for transonic flows). These two possible causes are

investigated.

The ROM obtained using snapshots computed at an upstream far-field Mach number M of 0.5 are also used to

construct ROMs of flows with a Mach number of 0.45. In such case, the accuracy of the ROMs is found to be

dependent on the difference in the Mach number values for the flow and the snapshots used in the POD technique.

Trends in the dynamics of the system are shown to be inadequately predicted even for small changes in the steady Mach

number, e.g., cut-on or cut-off frequencies, magnitudes of the coefficient of lift.

2. Flow modelling and model reduction

Typical flows of interest in turbomachinery are characterized by a large Reynolds number of order of a million, and

the effects of the flow viscosity is concentrated in a thin region around the solid boundaries and the wake, also known as

a boundary or inner layer. Thus, the flow is decomposed into an inviscid outer flow and a viscous inner flow. In the

following, we briefly outline the main characteristics of the model used. This model has been thoroughly validated and

discussed for both subsonic and transonic cases and the details may be found in Epureanu et al. (2000, 2001b). The

present paper is focused on the influence of the Mach number on the dimension of the reduced order models

constructed using proper orthogonal decomposition.

The upstream far-field Mach number affects the viscous as well as the inviscid flow. The inviscid flow is modelled by

the full potential equation, which may be expressed as
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where c is the local speed of sound given by

c2 ¼ c20 � ðg� 1Þ
@f
@t

þ
1

2
ð=fÞ2

� �
; ð2Þ

with c0 denoting the stagnation speed of sound and g the ratio of specific heats. The full potential is written in a

conservative form as
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where r is the flow density, which is expressed in terms of the potential as
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The potential is discretized using a Galerkin weighted-residual finite element method. An integral formulation is used

in the formZ Z
D
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� �
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where Q is the prescribed mass flux on the boundary, x is the distance along the boundary, Ni are shape functions, and n

is the local normal direction at the boundary of the domain over which the full potential equation is solved.

The Galerkin formulation is used to solve both the steady and the unsteady problems. The small disturbance

assumption is used based on the observation that the unsteadiness in the flow is much smaller than the steady

background flow. Thus, a dynamically linearized unsteady problem is solved. The potential is decomposed into a steady

value F and an unsteady small disturbance potential j periodically varying in time, such that

fðx; y; z; tÞ ¼ Fðx; y; zÞ þ R½jðx; y; zÞe jot	; ð6Þ

where j5F; j is the imaginary unit
ffiffiffiffiffiffiffi
�1

p
; and R denotes the real part.

Fig. 1 shows the domain where the inviscid outer flow is solved and the regions where different boundary conditions

apply. On the airfoil boundary, Q is a flux which arises from the motion of the airfoil and the thickening of the viscous

boundary layer (Epureanu et al., 2001b; Hall, 1994). The periodicity on the upstream region reads fup ¼ fdowne
js;

where s is the interblade phase angle. The wake boundary condition states that the jump in pressure across the wake is

zero. Because the computation domain is not perfectly aligned with the wake, an additional injection flux is applied on

the wake boundaries (Epureanu et al., 2000). For the steady problem, the upstream boundary condition specifies the
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value of the potential, while the downstream boundary condition specifies the downstream flux. For the unsteady

problem, the boundary conditions are exact nonreflecting (Hall et al., 1993) for the linearized unsteady problem.

The boundary layer equations may be obtained performing a scale analysis under the assumption of a very large

Reynolds number. In such an analysis, the diffusion process parallel to a body surface and wake may be neglected and

the momentum equation normal to the surface may be replaced by the condition of zero normal pressure gradient

throughout the boundary layer. In this analysis the local airfoil and wake curvature effects are neglected along with the

local deformation of the airfoil profile.

The two unsteady compressible equations which describe the mass and momentum equations for the flow in the thin

boundary layer shown in Fig. 1 are formally integrated to obtain the von K!arm!an energy and momentum integral

equations. Also, laminar-turbulent transition is of considerable practical interest because it strongly influences where

separation occurs. The en method to determine the transition is used. This method correlates the position of the

transition to the position where the overall maximum amplification of Tollmien–Schlichting disturbances is en:We used

the approximate spatial amplification curve derived by Drela (1986) based on the Orr–Somerfeld equation applied to a

Falkner–Skan profile family (Epureanu et al., 2001b).

The solution domain used to compute the viscous flow is shown in Fig. 1, where the thickness of the domain is

considered small in comparison to the chord. The steady integral boundary layer equations are parabolic in space so

that boundary conditions have to be applied only at the stagnation point. Close to the stagnation point, the flow is

similar to a flow over a wall. There is an analytical similarity solution for this flow that relates the displacement

thickness to the inviscid tangential velocity. This similarity solution is used as boundary condition at the stagnation

point.

The ‘‘snapshot’’ proper orthogonal decomposition method is used for model reduction. In this approach, the

response of the linearized system with L degrees of freedom is obtained and stored in a solution vector Ui; for a set of N

excitation frequencies oi: Each solution vector Ui has L complex entries and contains both the phase and the magnitude

of the response. A correlation matrix is formed and the modes containing the largest components of the energy of the

dynamics are retained, following the proper orthogonal decomposition methodology described in detail in Epureanu

et al. (2000, 2001b).

3. Numerical results

The models constructed are used to predict the flow state, while considering the motion of the airfoils (their reduced

frequency and interblade phase angle) as inputs. The analysis is focused on determining the dimension of the flow

dynamics, and the influence that the Mach number has on that dimension. Surely, the model of the flow may be

considered to have as inputs the Mach number and the geometrical characteristics of the cascade as well. However, such

an approach would not elucidate the fundamental physical question posed herein, i.e., what is the influence of the Mach

number on the number of dominant modes in the dynamics. The proposed approach is to construct reduced order

models for flows at certain Mach numbers and investigate their accuracy as applied to flows at other Mach numbers,

thus estimating the strength of the dependence of the reduced order models on the Mach number.

A generic compressor cascade geometry composed of NACA-5506 airfoils of chord c is considered. The solidity G=c

of the cascade has value 1, with G being the gap between the airfoils. The stagger angle g is 45�: The inflow angle Y is

55�; and the Reynolds number based on chord and upstream velocity Re is 5� 105: This configuration is numerically

investigated for several cases where the upstream far-field Mach number is 0.5, 0.6, 0.7, 0.8 and 0.9. The airfoils are

assumed to vibrate with small amplitudes at reduced frequency k ¼ oc=vN in a pitch motion about the mid-chord

point. The interblade phase angle of the vibration of the airfoils is denoted by s:
The proper orthogonal method is applied to a set of 700 snapshots obtained at 35� 20 distinct values of the

interblade phase angle s (varying from �180� to 180�) and reduced frequency k (varying from 0 to 2). Six distinct Mach

numbers are investigated, i.e., 0.45, 0.5, 0.6, 0.7, 0.8, and 0.9. The numerical results presented show the coefficient of lift
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acting on the vibrating airfoils. The interblade phase angle is maintained constant at a value of 90� for the

computations where the reduced frequency k is varied. Similarly, the reduced frequency k is maintained constant at a

value of 1 for the computations where the interblade phase angle s is varied.

Fig. 2 shows the imaginary (in phase) and real (out of phase) parts of the coefficient of lift as a function of the reduced

frequency k: The upstream far-field Mach number is 0:5: An accurate reduced order model may be constructed using

only 35 modes. This model is accurate for various reduced frequencies, as well as various interblade phase angles, as

shown in Fig. 3.

A similar number of degrees of freedom are required for a larger upstream far-field Mach number also. Fig. 4 shows

the real and imaginary parts of the coefficient of lift for an upstream far-field Mach number of 0.6. An accuracy similar

to the model obtained at Mach 0.5 is observed. This accuracy is maintained for various reduced frequencies, as well as

various interblade phase angles, as shown in Fig. 5.

Further increasing the upstream far-field Mach number to 0.7 and 0.8 does not require an increased number of

degrees of freedom for obtaining a similar accuracy. Fig. 6 shows the unsteady coefficient of lift at an upstream far-field

Mach number of 0.7 and indicates that a 35 mode model is accurate for various reduced frequencies. The same 35 mode

model is used successfully at various interblade phase angles as well (Fig. 7).

The steady flow field has a small transonic region for an upstream far-field Mach number of 0.8. The maximumMach

number in the field is 1.12 indicating the presence of a mild shock. Nevertheless, the number of degrees of freedom

required to construct an accurate reduced order model is approximately the same as is for the subsonic flows discussed

above. Fig. 8 shows that a 35 mode model is accurate for various reduced frequencies. Similarly, Fig. 9 shows that the

accuracy of the model is maintained for various interblade phase angles s as well.
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Fig. 2. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.5 and an interblade phase angle s of 90�:
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Fig. 3. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.5 and a reduced frequency k of 1.
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Nevertheless, the number of degrees of freedom required for similar accuracy at an upstream far-field Mach number

of 0.9 is higher. Fig. 11 shows that a 35 mode model may exhibit different characteristics than the full model for certain

reduced frequencies. A similar behavior is observed for certain interblade phase angles, as shown in Fig. 10.
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Fig. 5. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.6 and a reduced frequency k of 1.
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Fig. 4. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.6 and an interblade phase angle s of 90�:
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Fig. 6. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.7 and an interblade phase angle s of 90�:
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To obtain similar accuracy, the number of degrees of freedom of the reduced order model of transonic flow is

increased to 55. Fig. 11 shows the real and imaginary coefficient of lift obtained using a 55 mode model. Similar

accuracy is observed for various interblade phase angles, as shown in Fig. 10.
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Fig. 7. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.7 and a reduced frequency k of 1.
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Fig. 8. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.8 and an interblade phase angle s of 90�:
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Fig. 9. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.8 and a reduced frequency k of 1.
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An interesting question posed when using reduced order modelling concerns the applicability of the same model

reduction to different background flows. For inviscid flows, it has been recently shown (Epureanu et al., 2001a) that

snapshots obtained at a given Mach numbers may be used with reasonable success at other Mach numbers. However,

the effect of the viscosity (and especially the flow separation) leads to rapid and strong changes in the basis functions

obtained for model reduction at distinct upstream far-field Mach numbers. Distinct from inviscid flows, Fig. 12 shows

that the accuracy of a reduced order model constructed for a flow with an upstream far-field Mach number of 0.45 is

not accurate when the snapshots used are computed for a flow with an upstream far-field Mach number of 0.5. Similar

behavior is observed for various reduced frequencies as well as interblade phase angles, as shown in Fig. 13.

The pervasive existence of dominant modes the flow dynamics and their number may be observed by investigating the

magnitudes of the eigenvalues of the correlation matrix obtained for various background flows. The eigenvalues shown

in Fig. 14 have been scaled such that the largest eigenvalue has a magnitude of 1 for each upstream far-field Mach

number. Fig. 14 shows that the dominant eigenvalues are the largest 35 eigenvalues in the case of subsonic flows and the

largest 55 eigenvalues in the case of transonic flows.

An important factor in determining the number of modes in a reduced order model is the desired output of the model.

Fig. 14 shows the magnitude of the eigenvalues of the correlation matrix for two separate types of correlation matrices:

one is based on the potential and boundary layer variables, while the other is based on the pressure distribution on the

airfoil surface. The criterion used for evaluating accuracy is most often the precision of the unsteady pressure predicted.

In such cases, a correlation matrix based on the unsteady pressure is a more direct and precise indicator of the number

of modes required. Nevertheless, the modes are computed using the POD method applied to the flow and boundary

layer variables.
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Fig. 10. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.9 and a reduced frequency k of 1.
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Fig. 11. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.9 and an interblade phase angle s of 90�:
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Fig. 13. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.9 and a reduced frequency k of 1 (snapshots at

Mach 0.5; ROM results scaled down by a factor of 10).
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Fig. 14. Magnitudes of eigenvalues of the correlation matrices for various background flows. Eigenvalues are scaled such that the

largest eigenvalue has a magnitude of 1 for each upstream far-field Mach number.
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Fig. 12. Unsteady CL obtained using the full model and a ROM at a Mach number of 0.9 and an interblade phase angle s of 90�

(snapshots at Mach 0.5; ROM results scaled down by a factor of 10).
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4. Discussion and conclusions

The unsteady flow created by a cascade of oscillating airfoils was calculated. The unsteadiness in the flow was

assumed to be much smaller than the steady (nonlinear) flow. The dynamic perturbation about the nonlinear steady

flow was linearized. An inviscid-viscous flow model was used. The inviscid flow was described by the full potential

equation with appropriate upwinding in the transonic region. The viscous flow near the airfoils and in the wakes was

described by an integral boundary layer model.

A frequency-domain model was constructed for the unsteady perturbation of the flow field. The proper orthogonal

decomposition technique was then applied to this model to construct several reduced order models of subsonic and

transonic flows. An intrinsic feature of the POD method is the need for computing snapshots. When the aerodynamic

information per se is needed, then constructing the POD model takes about as much time as the original method. When

the aerodynamic model is combined with a structural model, the time saved is orders of magnitude because one is using

a POD model with less than 60 degrees of freedom instead of the original CFD model with approximately 6000 degrees

of freedom. The purpose of the present analysis is to estimate the number of degrees of freedom required by accurate

reduced order models by estimating the dimension of the inertial manifold of the flow dynamics. This estimate provide

insightful physical understanding of the complex flow dynamics and provides useful information which may be used in

a broad range of model reduction techniques.

A cascade of NACA-5506 airfoils has been investigated to show that reduced order models with only 35 degrees of

freedom accurately predict the unsteady response of the full model with approximately 6000 degrees of freedom in the

subsonic regime. Similarly, reduced order models with 55 degrees of freedom were shown to accurately predict the

response of the full model in the transonic regime. Recently, it has been shown (Epureanu et al., 2001a) that the inviscid

flow is characterized by a dimension of the inertial manifold of about 25 for both subsonic and transonic cases. Distinct

from inviscid flows, the viscous flows show a different characteristic. The increase in the required number of degrees of

freedom observed in the transonic viscous flows suggests that the dimension of the inertial manifold increases from

approximately 35 to approximately 55. This increase is due to the presence of the shock and not the increase in the

Mach number per se. The inertial manifold has a dimension of approximately 35 for a broad range of Mach numbers,

from 0.5 to 0.8.

Previous studies have shown that 75 modes are required to accurately model transonic viscous flows (Epureanu et al.,

2000) when approximately 100 snapshots are used for model reduction. In the present analysis, 700 snapshots were used

and reduced order models of similar accuracy were constructed with only 55 modes. The difference in the number of

modes indicates that the accuracy of the POD modes use for reduction is a critical factor in constructing reduced order

models. The dimension of the manifold is about 55 in previous studies as well as in the present study. However, more

modes are necessary—for the same accuracy—when inaccurate POD modes are used. Thus, when a smaller number of

snapshots is used, it seems that the inertial manifold is larger when in fact it is not.

In certain applications, the proposed approach has several limitations. For example, modelling flows over a range of

geometries and Mach numbers may not be accomplished. Also, the present analysis is only valid for small amplitude

oscillations about a large magnitude steady state, and for flows with mild shocks. Nevertheless, the present analysis

clarifies another important point, i.e., the dimension of the inertial manifold is about 35 for all subsonic flows of

interest. However, the shape of the dominant modes is not the same. This fact is demonstrated by the results showing that

significantly lower accuracy is obtained when modes obtained at a Mach number of 0.5 were used at a Mach number of

0.45. The change in the shape of the dominant modes seems to be rapid and substantial for the subsonic case discussed.

Thus, the POD snapshots at a Mach number of 0.5 cannot be used at a Mach number of 0.45. Nevertheless, as the

Mach number changes, the POD modes remain the same in number (for subsonic flows) although they change in shape.
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